After hedging and topping this year, pulverize prunings with the Marwald KV-220 Flail Chopper. The heavy-duty 220 will easily shred all average size branches and with its offset capabilities, there is no need for windrowing. The Marwald Flail Chopper is designed for quick, efficient pulverizing...it will get you in and out of the grove fast saving you time and money!

Call today for a free demo. See the KV 220 in action. We have 220's ready for immediate delivery anywhere in Florida!

Marwald of Florida, Inc.
Specialized Agricultural Equipment
Phone (813) 665-2309
1716 S. Combee Rd., Lakeland, FL
P.O. Box 1330, Eaton Park, FL 33840

Professional irrigation systems make things grow...including us!

When Kahn Irrigation Systems was originally founded, we felt there was a real need for professional irrigation systems in the Sebring area. We were wrong.
The need for such systems goes far beyond Sebring. So we're happy to say, we've expanded our operations to serve the entire south central region of Florida. And while we're getting bigger, we're also getting better.
If you're thinking about buying a professional irrigation system, remember us—you can depend on Kahn.

- Complete irrigation systems for agricultural, industrial, commercial and other uses.
- Professional consultation, design and installation.
- Dependable service— with complete parts inventory.
- We carry Spot, Micro-Jet, Senninger, Rainbird, and other fine product lines.

Kahn Irrigation Systems, Inc.
P.O. Box 669, 5632 U.S. 27 South Sebring, Florida 33870 Phone: (813) 385-1920
and trees were shaken with an experimental air shaker using a conical scanning air delivery system at a harvest rate of 1.5 acres (0.6 ha) per hour. Fruit removal percentages ranged from 97 to 99. Uniform spray coverage was necessary to achieve these high recovery rates. The most effective chemical combination was Release (100 ppm) and Acti-Aid (1.5-2.5 ppm). The low Acti-Aid concentrations improved fruit loosening with minimal leaf losses. The number of degree-hours above 60°F (16°C) for January-February, 1979 was computed to be 19 per cent and 40.6 per cent greater than for comparable groves near Lake Alfred (central Florida) and Tavares (northcentral Florida), respectively. These higher temperatures could be the principle reason that the fruit removal effort was more successful in the south Florida area. The estimated total cost of removing the fruit to the ground was $0.41/box (40.8 kg).

Over the past 20 years, many harvesting experiments, with or without abscission (loosening) chemicals, have been conducted under field conditions. In general, results of most of these tests with early and midseason oranges (E-MS) have concluded that limb shakers, with or without catching frames, are suitable for most Florida citrus trees which are sufficiently open (or can be opened by light pruning) to allow attachment of the tree clamps (1).

Abscission chemicals are not necessarily needed for these systems. However, their use is beneficial as an aid to speed fruit removal, increase removal efficiency and lessen power requirements necessary to shake a tree. Since chemical loosening is not always effective, its use has not allowed development of less powerful and expensive shaking equipment. The citrus industry is interested in the air shaker method of fruit removal because its high removal rate (capacity) holds removal cost per box of harvested fruit to a minimum. Machine repairs are inherently less as the shaking power is distributed constantly to the tree through the air delivery system without reaction vibrations transmitted into the machine.

The problem of adopting the air shaker approach to fruit removal for E-MS oranges has been 1) erratic abscission chemical behavior, which seems to be principally due to adverse

Figure 1. Air harvester developed by FDOC utilizing conical scanning air delivery system.

This small Microjet emitter is truly remarkable. It can conserve water, reduce maintenance, increase plant growth and crop yields, provide an easy means of fertigation... even reduce the hazard of young tree loss in new plantings.

And there's more, much more. Like precise spray patterns, uniform distribution of moisture in the root zone and consistent flow year after year. It's little wonder Microjet is the first choice in low volume irrigation systems.

To get the full story and the name of the Microjet irrigation specialist in your area, write or call today.

Harry Lyon, Representative Office Phone: 813-422-3828 P.O. Box 1688 813-422-2667 Haines City, Florida 33844

MICROJET®

Microjet Irrigation System protected by Patent Number 3,815,813
All Rights Reserved, 1979
weather effects during the Winter months, and 2) application of abscession chemicals requires uniform fruit coverage for air harvester operations, as the mode of action of these chemicals is entirely by contact with the fruit (5). It is well recognized that abscession is a biological process, and its temperature dependent.

The purpose of this paper is to summarize experimental fruit removal results achieved during the 1978-79 fruit season in Florida using abscession chemicals and a newly designed conical scanning air shaker for harvesting bedded groves prevalent in south Florida. Fruit collection and handling is covered in another publication (3).

Material and Methods

Trees were sprayed with air carrier sprayers. Sprayers were nozzled so that approximately two-thirds of the solution was applied in the top one-third of the tree. The remainder was applied as a spray mist coverage. Five treatments were applied: 1) 100 + 2.5, 2) 100 + 2.5, 3) 100 + 2.5, 4) 100 + 2.5, and 5) 100 + 2.5. The 100 + 2.5 treatment was applied with a FDOC modified Agtec sprayer; all others were applied with FMC 757 (double oscillating volute) sprayer. Treatments were combinations (Release + Acti-Aid) of abscession chemicals except the 2/22 treatment was Pik-Off (PO) at 5 qts/500 gal (300 ppm).

Table 1. The effects of date of application and temperatures on the performance of abscession chemicals and air shaker on fruit removal of 'Hamlin' oranges at LaBelle, Florida.

<table>
<thead>
<tr>
<th>Spray date</th>
<th>Treatment</th>
<th>Days after appl.</th>
<th>G0 & above</th>
<th>FRF (lb)</th>
<th>Preharvest temp & SD</th>
<th>Air shaker removal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/18</td>
<td>100 + 2.5</td>
<td>4</td>
<td>629</td>
<td>2.95 ± 2.47</td>
<td>87</td>
<td>76-49</td>
</tr>
<tr>
<td>1/25</td>
<td>100 + 2.5</td>
<td>4</td>
<td>620</td>
<td>5.34 ± 2.53</td>
<td>18</td>
<td>57-42</td>
</tr>
<tr>
<td>2/1</td>
<td>100 + 2.5</td>
<td>4</td>
<td>302</td>
<td>2.67 ± 3.10</td>
<td>92</td>
<td>64-40</td>
</tr>
<tr>
<td>2/9</td>
<td>100 + 2.5</td>
<td>4</td>
<td>236</td>
<td>3.39 ± 1.83</td>
<td>8</td>
<td>68-34</td>
</tr>
<tr>
<td>2/14</td>
<td>100 + 1.5</td>
<td>4</td>
<td>794</td>
<td>2.63 ± 1.82</td>
<td>85</td>
<td>77-47</td>
</tr>
<tr>
<td>2/22</td>
<td>100 + 1.5</td>
<td>4</td>
<td>1200</td>
<td>1.90 ± 0.98</td>
<td>97</td>
<td>84-66</td>
</tr>
<tr>
<td>2/22</td>
<td>5 qts/500 PO</td>
<td>4</td>
<td>1200</td>
<td>2.00 ± 1.35</td>
<td>76</td>
<td>84-66</td>
</tr>
<tr>
<td>Control</td>
<td>(handpick)</td>
<td>--</td>
<td>--</td>
<td>11.98 ± 2.60</td>
<td>0.5</td>
<td>--</td>
</tr>
</tbody>
</table>

*Treatment on 1/18 was applied with FDOC modified Agtec sprayer; all others were applied with FMC 757 (double oscillating volute) sprayer. Treatments were combinations (Release + Acti-Aid) of abscession chemicals except the 2/22 treatment was Pik-Off (PO) at 5 qts/500 gal (300 ppm).

*Computed from official NOAA weather thermographs for LaBelle, Florida (located at Alico).

*Trees averaged 825 fruit.

*Air shaker used was FDOC experimental model with conical scanning air delivery system.
third of the trees. Nozzles were large-orifice (dilute) type to obtain large droplet sizes for better fruit coverage. Sprayer ground speed was three-fourths mph (1.2 km/h) and application rate was 750 gallons (2839.4 l) per acre (0.4 ha). The FDOC modified Agtec Sprayer was used on the first test; an FMC 757 (double oscillating volute) Speedsprinter was used on all subsequent tests.

Abscission chemicals used in the test were tank mix combinations of Release (5 - chloro - 2 - methyl - 4 - nitro - 1H pyrazole) and Acti-Aid (cyco-heximide) at concentrations of 100 ppm. Release + 1.5-2.5 ppm Acti-Aid with 0.1 per cent Ortho X-77 surfactant. Pik-Off (dioxylglyoxime) was used in one test (no surfactant). Trees were 15 years of age, height was 13 feet (4.0 m) and every other tree was cross hedged. Tree planting distances were 15 feet (4.6 m) x 25 feet (7.6 m) on eight-row beds with no water furrows; treatments were of single row either one-fourth mile (0.4 km) or one-half mile (0.8 km) in length.

Fruit removal force (FRF) readings and fruit drop counts were made from five or more randomly selected trees in the row. Leaf drop observations and other pertinent data was also collected from these trees. Fruit removal efficiency was obtained by randomly counting the fruit remaining on 20 trees from each treatment and by computing total number of fruit on trees from weight of fruit recovered in the harvest operations. Removal efficiency was compared to that obtained from an adjacent block handpicked by a commercial crew.

Temperature for these tests and other comparative temperature data were collected from thermographs located in or near treatment plots where mechanical harvesting operations were conducted regularly. Computation of degrees x hours (day-hrs) (an integration of the area 60°F (16°C) and above over temperature-time chart) for each day was manually obtained from these official thermograph records.

An air shaker (Figure 1) designed and built by the FDOC at AREC, Lake Alfred, utilizing a conical scanning air delivery system, was used for removing the fruit. The machine used a 54-inch diameter vane axial fan driven by diesel engine rated at 150 continuous horsepower. Air was applied to the tree by means of a fixed vane assembly rotated about the axis of air flow, thus distributing the air in a conical pattern as the machine progressed down the tree row. The trees were shaken by making a pass down each side of the row.

During harvest operations the fan center was positioned to a height of seven feet to obtain a shaking action of the tree skirts and at the same time deliver enough air to the top part of the tree for maximum fruit removal.

The shaker was operated at a forward speed of one mph (1.6 km/hr), a fan speed of 1500 rpm (25 Hz) and an oscillator rotation rate of 70 rpm (1.2 Hz). These machine settings...
Results and Discussion

Abscission chemicals produced generally excellent and consistent loosening of fruit in the south Florida region (Table 1) when applied under the prevailing climatic conditions for these dates. FRF was low enough (five pounds or less) for the air shaker to achieve high fruit removal efficiencies (96-99 per cent). Preharvest fruit drop ranged from eight to 97 per cent with the highest dropped at the lowest FRF.

When less than favorable weather conditions intervened, causing some retardation of chemical loosening, the air shaker was able to override the increased activity of the chemical and still achieve an acceptable removal efficiency. However, severe adverse weather (rain following application, etc.) could cause fruit loosening levels that could not be satisfactorily overridden. The air shaker’s fruit removal efficiencies were comparable in a majority of the tests to the 99 per cent obtained from a hand picking crew in an adjoining block.

These field observations indicate that to produce excellent fruit loosening following an application of abscission chemicals, 300 or more degree-hours are necessary within a three to four day period (Table 1). Generally, the degree-hours after spray varies inversely with FRF. The temperature at the time of spray application is probably also involved. However, more specific comments regarding these factors must await additional future temperature studies under more controlled conditions.

Weather and its predictability, through its effect on fruit loosening, play a most important function in the overall success of the air shaker, particularly since the air shaker requires excellent loosening for high fruit removal efficiencies economically necessary in Florida (4).

The air shaker removed fruit at the rate of 650 boxes (26,535 kg) per hour or a harvest rate of 170 trees per

- May, 1980 55
hour. This rate was more than adequate to be compatible with other components in a complete mechanical harvest system (3). The air shaker performed well mechanically with only minor adjustments necessary. However, longer periods of use will be necessary to prove machine reliability.

Air shaker performance in other portions of the state has generally been very erratic, usually because of poor fruit loosening. A comparison of locations in south, central, and north-central Florida showed a 19 and 36 per cent reduction, respectively, in a total number of degree-hours during January and February, 1979 (Table 2). (However, individual situations in an area may vary somewhat because of elevation, proximity to lakes, etc.).

Although these figures alone do not account for all the failures of fruit loosening observed, it is known that warm and dry weather conditions in the Winter harvesting period usually produce the most successful fruit removal operations. Very cold periods, wet or dry, almost always have resulted in delayed and inadequate fruit loosening. It would appear from the data that south Florida would be an area where fewer abscission failures due to low temperatures should occur, and the probability of achieving consistently good air shaker efficiencies should be higher.

Table 2. Integration of temperatures (60°F and above) for the period January 1-February 28, 1979 for 5 locations in the Florida citrus growing region.

<table>
<thead>
<tr>
<th>Location</th>
<th>Dg-hrs (60°F and above)²</th>
<th>% reduction from Aliso</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaBelle (Alico)</td>
<td>6176</td>
<td>-</td>
</tr>
<tr>
<td>Coke block</td>
<td>5024</td>
<td>19</td>
</tr>
<tr>
<td>Experiment Station (LA)</td>
<td>3667</td>
<td>41</td>
</tr>
<tr>
<td>Tavares</td>
<td>3945</td>
<td>36</td>
</tr>
<tr>
<td>Immokalee Exp. Station</td>
<td>7101</td>
<td>(15)</td>
</tr>
</tbody>
</table>

²Integrations were performed manually by computing total degrees x hrs from thermographs located at these locations.
than adequate with other mechanical or shaker equipment. However, the 8-foot (2.4 m) tower used for the spray tests did not always permit thorough spray penetration into the thick, foliaged trees. But, no visible damage was caused by the applied chemicals. Subsequent tests showed that the spraying was done thoroughly and that the chemical was distributed evenly within the tree canopy.

All subsequent tests were made using an FMC 757 sprayer which had a tower but utilized double rotors to avoid the carrier air stream so that branches on the trees were caused to move during the time the sprayer was used. The results were obtained with larger orifices also seemed to improve total coverage. Using this sprayer as described produced almost total fruit coverage with the gallons of water used. Our observations of other spraying operations indicated that more care than is currently being displayed by most growers to spray pesticides.

Cost analysis based on the harvest capacity of 1800 boxes per day showed the abscission chemical expense, fixed and variable costs of the spraying and the shaking operations, to be near $0.18, $0.07 and $0.16 per box, respectively. The total cost of dropping fruit to the ground was $0.41 per box (2).

These experiments indicate that when fruit is uniformly, chemically loosened to an FRF of two to four pounds and substantial percentages have dropped, the conical sampling air shaker can remove fruit at efficiencies comparable to handpicking. The application of these findings to a full scale operation raises other questions that must be answered: 1) how consistent can effective fruit loosening be achieved during the 50-day harvest season and 2) can a seasonal harvest capacity be achieved to make the system cost effective.

CITCO-TRI BASIC® Control Profit
Robbing Diseases—Melaunose—Scab—Greasy Spot—Brown Rot. Demand the reliable Tri-Basic copper sulfate fungicide containing 53% copper. You'll get the TOP QUALITY YIELDS necessary for PROFITABLE Citrus production.

Melanose control—apply at 1 to 3 weeks after petal fall. Under severe melanose pressure, a repeat application 4 weeks later will also protect your fruit from early greasy spot. A Citco Tri-Basic® summer spray gives you proven economical protection from greasy spot. Citco Tri-Basic® is EPA registered for application on Citrus by Aerial, Concentrate or Dilute Sprayers. Read our label for dosage and timing.

CITIES SERVICE COMPANY
INDUSTRIAL CHEMICALS DIVISION, DEPT. C-5
P.O. Box 50360, Atlanta, Georgia 30032, (404) 261-9100