CITRUS MECHANICAL HARVESTING: MACHINE ENHANCEMENT AND IMPROVEMENT

Reza Ehsani Assistant Professor Citrus Research & Education Center

Machine Enhancement and Improvement

- Yield monitoring
 - Developing a rugged fruit mass flow sensor
- Reducing tree injuries through improved canopy shaking mechanisms
 - Study the parameters that effect fruit removal or causes tree injuries
- Variable rate shaking
 - Measuring canopy size and volume
 - Developing a control system to adjust the optimal shaking parameters

Yield Monitoring System for Citrus Mechanical Harvesting Machines

- Yield monitor can be used to:
 - Quantify the yield variability within or between a citrus orchard block
 - Prevent overloading or under-loading of citrus transportation truck
 - Yield monitoring system for citrus mechanical harvesting machines
 - Simple
 - Easy to install and operate
 - Easy to maintain and calibrate
 - Rugged and durable
 - Cost-effective

Components of a Yield Monitor for Citrus Mechanical Harvester

Mass Flow Sensor

SYSTEM COMPONENT/s

Two photo interruption layers
20 laser beams per layer
PIC microcontroller

ADVANTAGE

-Absence of defocus problem -Long life calibration **DISADVANTAGE**

- erroneous signals due to vibrations.

Mass flow sensor with 40 laser beams

$$\hat{N} = N_T \left(\frac{\sum_{i=1}^{N_T} v_i \sum_{i=1}^{N_T} \Delta t p c_i}{\sum_{i=1}^{N_T} v_i \sum_{i=1}^{N_T} \Delta t p s_i} + 1 \right) = N_T \left(\frac{\sum_{i=1}^{N_T} \Delta t p c_i}{\sum_{i=1}^{N_T} \Delta t p s_i} + 1 \right) = N_T \left(\frac{\overline{\Delta t p c_i}}{\overline{\Delta t p s_i}} + 1 \right)$$

CONSTRAINT Poisson Flow

Dual interruption timing mechanism

Impact Plate

SYSTEM COMPONENT/s - Four (4) Load Cells

- Tern Controller, GPS

ADVANTAGE -*Rugged and easy to handle* -*Easy to install and maintain*

Plate displacement

IMPACT FORCE

$$\frac{1}{2}Mv^{2} = \int_{0}^{\delta_{\max}} Fd\delta + \int_{0}^{\alpha_{\max}} Fd\alpha$$
PLATE DISPLACEMEN

$$\Phi(f) = \frac{|S(f)|^{2}}{|S(f)|^{2} + |N(f)|^{2}}$$
FUTED

$$Clumps = \begin{cases} \beta(x-T) & for (x-T) > \alpha, \\ (x-T) & otherwise. \end{cases}$$
$$Pr. Weight = \begin{cases} Clumps & for x > T, \\ 0 & otherwise. \end{cases}$$

WEIGHT

LABORATORY & FIELD TEST

Field Calibration

Yield Monitoring System in Action

Reducing Tree Injuries & Improving Fruit Removal

Force Distribution in the Tree Canopy during Mechanical Harvesting

Reducing Tree Injuries & Improving Fruit Removal

- Study the force distribution in a canopy of citrus trees and determine the best shaking parameters for each type and size of tree
 - Study the force distribution in an individual branch in the tree when harvested by a canopy shaker
 - Study the effects of frequency of shaker, angle of tines and tree size on the force distribution
- Variable rate shaking
 - Measuring canopy size and volume
 - Developing a control system to adjust the optimal shaking parameters

Independent Variables

- Tree size
- Angle of tines
- Frequency of the canopy shaker

	Independent Variable	Levels	Values	
1	Tree Size	1	Large	Travel
	(2 Levels)	2	Medium	Top view
2	Angle of Tines	1	5°	
	(3 Levels)	2	20°	The statement
		3	35°	
3	Frequency of canopy	1	200 cpm	
	shaker (3 Levels)	2	250 cpm	Side view
		3	300 cpm	

Methodology

Instrumenting the branch:

- Instrumenting the selected branch starts from the base of the branch where it is joined with the main trunk.
- A sensor is placed at the base.
- From the base of the branch, the sensors are placed at distances of multiples of 50 cm.
- The last sensor is placed such that the diameter of the branch at that location is about 15 cm.

Images of a Tested Tree

Videos of Experiment

PRELIMINARY RESULTS

Large Tree

Preliminary Results

Medium Tree

Variable Rate Shaking of Trees According to Size by Canopy Shakers

Tree Canopy Volume Measurement

Tree Canopy Volume Measurement

-18.13

-2.82

-5.40

Thank You

Any Questions?